Abstract
Minimum distances, distance distributions, and error exponents on a binary-symmetric channel (BSC) are given for typical codes from Shannon's random code ensemble and for typical codes from a random linear code ensemble. A typical random code of length N and rate R is shown to have minimum distance N/spl delta//sub GV/(2R), where /spl delta//sub GV/(R) is the Gilbert-Varshamov (GV) relative distance at rate R, whereas a typical linear code (TLC) has minimum distance N/spl delta//sub GV/(R). Consequently, a TLC has a better error exponent on a BSC at low rates, namely, the expurgated error exponent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.