Abstract

In this study we introduce a new stochastic choice rule that categorizes objects in order to simplify the choice procedure. At any given trial, the decision maker deliberately randomizes over mental categories and chooses the best item according to her utility function within the realized consideration set formed by the intersection of the mental category and the menu of alternatives. If no alternative is present both within the considered mental category and within the menu the decision maker picks the default option. We provide the necessary and sufficient conditions that characterize this model in a complete stochastic choice dataset in the form of an acyclicity restriction on a stochastic choice revealed preference and other regularity conditions. We recover the utility function uniquely up to a monotone transformation and the probability distribution over mental categories uniquely. This model is able to accommodate violations of IIA (independence of irrelevant alternatives), of stochastic transitivity, and of the Manzini–Mariotti menu independence notion (i-Independence).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.