Abstract

In noncontact vital-sign-monitoring applications, the cancelation of the random body movement (RBM) becomes critical for a proper tracking. When using Doppler radars, this RBM suppression has been typically carried out through phase measurements obtained from two opposite sides of the human body. In this work, the employment of two frequency-modulated continuous-wave (FMCW) radars to deal with the RBM phenomenon is proposed. An advanced range-bin alignment technique is utilized to derive the range histories from the two transceivers and proceed with the RBM mitigation. Moreover, since this approach is only based on the signal amplitudes, the FMCW radar sensors do not need to be coherent. Simulated results are also reported to corroborate the effectiveness of the devised RBM suppression technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.