Abstract

Well-dispersed, random alloy, palladium-gold nanoparticles (2.66±0.51nm) were immobilized onto several reducible mesoporous transition metal oxide materials. The composites (palladium-gold nanoparticles immobilized onto mesoporous transition metal oxide (PdAu–MTMO)) were characterized through several analytical methods such as UV–vis spectroscopy, BET, XRD, FT-IR, ICP-OES, TEM and TPR analyses. Catalytic oxidation of morin (quercetin) was performed as a model reaction in the presence of hydrogen peroxide to investigate the synergic catalytic activity of the composite. Silica was used as inert support to isolate the catalytic activity of the metal nanoparticles (32.69±9.93kJmol−2). Synergistic interaction of PdAu–MTMO was mechanically described according to Langmuir-Hinshelwood and Mars-van Krevelen approaches. The TOF of PdAu–Co3O4 (6073.23±85.01s−1mol−1) was considerably larger than that of random alloy nanoparticles (PdAu–SiO2 (25.71±2.35s−1mol−1)). The Arrhenius-type plot was constructed to determine the synergistic activity of the composite, where PdAu–Co3O4 described the best synergistic interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.