Abstract

Accurate control of the Ras-related nuclear protein (Ran) GTPase cycle depends on the regulated activity of regulator of chromosome condensation 1 (RCC1), Ran's nucleotide exchange factor. RanBP1 has been characterized as a coactivator of the Ran GTPase-activating protein RanGAP1. RanBP1 can also form a stable complex with Ran and RCC1, although the dynamics and function of this complex remain poorly understood. Here, we show that formation of the heterotrimeric RCC1/Ran/RanBP1 complex in M phase Xenopus egg extracts controls both RCC1's enzymatic activity and partitioning between the chromatin-bound and soluble pools of RCC1. This mechanism is critical for spatial control of Ran-guanosine triphosphate (GTP) gradients that guide mitotic spindle assembly. Moreover, phosphorylation of RanBP1 drives changes in the dynamics of chromatin-bound RCC1 pools at the metaphase-anaphase transition. Our findings reveal an important mitotic role for RanBP1, controlling the spatial distribution and magnitude of mitotic Ran-GTP production and thereby ensuring accurate execution of Ran-dependent mitotic events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.