Abstract

For natural numbers d and t there exists a positive C such that if F is a family of nC semi-algebraic sets in Rd of description complexity at most t, then there is a subset F' of F of size $n$ such that either every pair of elements in F' intersect or the elements of F' are pairwise disjoint. This result, which also holds if the intersection relation is replaced by any semi-algebraic relation of bounded description complexity, was proved by Alon, Pach, Pinchasi, Radoicic, and Sharir and improves on a bound of 4n for the family F which follows from a straightforward application of Ramsey's theorem. We extend this semi-algebraic version of Ramsey's theorem to k-ary relations and give matching upper and lower bounds for the corresponding Ramsey function, showing that it grows as a tower of height k-1. This improves on a direct application of Ramsey's theorem by one exponential. We apply this result to obtain new estimates for some geometric Ramsey-type problems relating to order types and one-sided sets of hyperplanes. We also study the off-diagonal case, achieving some partial results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.