Abstract
We formulate a polarized version of Ramsey’s theorem for trees. For those exponents greater than 2, both the reverse mathematics and the computability theory associated with this theorem parallel that of its linear analog. For pairs, the situation is more complex. In particular, there are many reasonable notions of stability in the tree setting, complicating the analysis of the related results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.