Abstract

Two-photon processes that involve different sub-levels of the ground state of an atom, are highly sensitive to depopulation and decoherence within the ground state. For example, the spectral width of electromagnetically induced transparency resonances in $\Lambda-$type system, are strongly affected by the ground state depopulation and decoherence rates. We present a direct measurement of decay rates between hyperfine and Zeeman sub-levels in the ground state of $^{87}$Rb vapor. Similar to the relaxation-in-the-dark technique, pumping lasers are used to pre-align the atomic vapor in a well defined quantum state. The free propagation of the atomic state is monitored using a Ramsey-like method. Coherence times in the range 1-10 ms were measured for room temperature atomic vapor. In the range of the experimental parameters used in this study, the dominant process inducing Zeeman decoherence is the spin-exchange collisions between rubidium atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.