Abstract
We quantify the impact of spatio-temporally correlated Gaussian quantum noise on frequency estimation by Ramsey interferometry. While correlations in a classical noise environment can be exploited to reduce uncertainty relative to the uncorrelated case, we show that quantum noise environments with frequency asymmetric spectra generally introduce additional sources of uncertainty due to uncontrolled entanglement of the sensing system mediated by the bath. For the representative case of collective noise from bosonic sources, and experimentally relevant collective spin observables, we find that the uncertainty can increase exponentially with the number of probes. As a concrete application, we show that correlated quantum noise due to a lattice vibrational mode can preclude superclassical precision scaling in current amplitude sensing experiments with trapped ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.