Abstract
AbstractThe classical result in the theory of random graphs, proved by Erdős and Rényi in 1960, concerns the threshold for the appearance of the giant component in the random graph process. We consider a variant of this problem, with a Ramsey flavor. Now, each random edge that arrives in a sequence of rounds must be colored with one of r colors. The goal can be either to create a giant component in every color class, or alternatively, to avoid it in every color. One can analyze the offline or online setting for this problem. In this paper, we consider all these variants and provide nontrivial upper and lower bounds; in certain cases (like online avoidance) the obtained bounds are asymptotically tight. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2011
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.