Abstract

The task of cell segmentation in microscope images is difficult and popular. In recent years, deep learning-based techniques have made incredible progress in medical and microscopy image segmentation applications. In this paper, we propose a novel deep learning approach called Residual-Atrous MultiResUnet with Channel Attention Mechanism (RAMRU-CAM) for cell segmentation, which combines MultiResUnet architecture with Channel Attention Mechanism (CAM) and Residual-Atrous connections. The Residual-Atrous path mitigates the semantic gap between the encoder and decoder stages and manages the spatial dimension of feature maps. Furthermore, the Channel Attention Mechanism (CAM) blocks are used in the decoder stages to better maintain the spatial details before concatenating the feature maps from the encoder phases to the decoder phases. We evaluated our proposed model on the PhC-C2DH-U373 and Fluo-N2DH-GOWT1 datasets. The experimental results show that our proposed model outperforms recent variants of the U-Net model and the state-of-the-art approaches. We have demonstrated how our model can segment cells precisely while using fewer parameters and low computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.