Abstract

We propose a Rényi's entropy based analog circuit soft fault detection method. This method extracts the entropy information from the probability density function (PDF) of the output of the circuit under test (CUT), which is sensitive to the parameters of circuits. In this method, firstly, the Lagrange multiplier method with Rényi's entropy is used to deduce PDF of the output signal. Then through the maximum likelihood estimation method, we estimate the parameter α of Rényi's entropy adaptively according to the output of CUT. Finally, the value of Rényi's entropy can be calculated using the PDF and α parameter. The divergence between the Rényi's entropy corresponding to the fault and fault free circuits is adopted to detect the fault. This method can 100% detect soft faults, including the single fault and multiple faults, without complicate models and mass of data, and also with no need of interrupting the inherent contentions of CUT. Experiments are conducted respectively on two circuits that are implemented on an actual circuit board. The effectiveness of the proposed method is demonstrated by the result of the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.