Abstract
Future transport systems will rely on new electrified drives utilizing batteries and hydrogen-powered fuel cells or combustion engines with sustainable fuels. These systems must complement each other and should not be viewed as competing. Properties such as efficiency, range, as well as transport and storage properties will determine their use cases. This article looks at the usability of liquid electro-fuels in freight transport and analyzes the production capacities that will be necessary through 2050 in Germany. Different scenarios with varying market shares of electro-fuels are considered. A scenario with a focus on fuel cells foresees a quantity of 220 PJ of electro-fuels, i.e., 5.1 million tons, which reduces 80% of carbon dioxide emissions in LDV and HDV transport. A further scenario achieves carbon-neutrality and leads to a demand for nearly 17 million tons of e-fuel, corresponding to 640 PJ. Considering a final production rate of 5.1 million tons of electro-fuels per year leads to maximum investment costs of around EUR 350 million/year in 2036 during the ramp-up phase. The total investment costs for synthesis plants amount to EUR 4.02 billion. A carbon-neutrality scenario requires more than a factor 3 for investment for the production facilities of electro-fuels alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.