Abstract

BackgroundMitochondrial introgression may result in the mitochondrial genome of one species being replaced by that of another species without leaving any trace of past hybridization in its nuclear genome. Such introgression can confuse the species genealogy estimates and lead to absurd inferences of species history. We used a phylogenetic approach to explore the potential mitochondrial genome introgression event(s) between two closely related green pond frog species, Pelophylax nigromaculatus and P. plancyi.ResultsDNA sequence data of one mitochondrial and two nuclear genes from an extensive sampling of the two species were collected, and the genealogies of the three genes were constructed and compared. While the two nuclear genes congruently showed mutual reciprocal monophyly of both species, the mitochondrial phylogeny separated a Korean P. nigromaculatus clade, a paraphyletic central China P. plancyi assemblage, and a large well-supported introgression clade. Within the introgression clade, the mitochondrial haplotypes of the two species were mixed together. This reticulated pattern can be most parsimoniously explained by an ancient mitochondrial introgression event from P. plancyi to P. nigromaculatus that occurred at least 1.36 MYA, followed by multiple recent introgression events from P. nigromaculatus back to P. plancyi within the last 0.63 MY. The re-constitution of previously co-adapted genomes in P. plancyi may be responsible for the recent rampant introgression events. The Korean P. nigromaculatus clade likely represents the only surviving "true" mitochondrial lineage of P. nigromaculatus, and the central China P. plancyi assemblage likely represents the "original" P. plancyi mitochondrial lineage. Refugia in the Korean Peninsula and central China may have played a significant role in preserving these ancient lineages.ConclusionsThe majority of individuals in the two species have either introgressed (P. nigromaculatus) or reclaimed (P. plancyi) mitochondrial genomes while no trace of past hybridization in their nuclear genomes was detected. Asymmetrical reproductive ability of hybrids and continuous backcrossing are likely responsible for the observed mitochondrial introgression. This case is unique in that it includes an ancient "forward" introgression and many recent "backward" introgressions, which re-constitutes the original nuclear and mitochondrial genomes of P. plancyi. This hybrid system provides an excellent opportunity to study cyto-nuclear interaction and co-adaptation.

Highlights

  • Mitochondrial introgression may result in the mitochondrial genome of one species being replaced by that of another species without leaving any trace of past hybridization in its nuclear genome

  • Sequence data were collected from two nuclear genes (POMC and tyrosinase gene (TYR))

  • To best explain our data, we further propose a multiple mitochondrial genome introgression hypothesis: one ancient "forward" mitochondrial introgression event from P. plancyi to P. nigromaculatus followed by rampant recent "backward" introgression events from P. nigromaculatus to P. plancyi

Read more

Summary

Introduction

Mitochondrial introgression may result in the mitochondrial genome of one species being replaced by that of another species without leaving any trace of past hybridization in its nuclear genome. Such introgression can confuse the species genealogy estimates and lead to absurd inferences of species history. Historical mitochondrial introgression often results in the mitochondrial genome of one species being replaced by that of another species without leaving any trace of hybridization in its nuclear genome. Other cases of mitochondrial introgression have been reported in diverse metazoan taxa including carabid beetles [5], fruit flies [6], brook charr [7], megophryid frogs [8], Sika deer [9], African elephants [10], and pocket gophers [11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call