Abstract

We aimed to examine the time course for the diabetes-related changes in renal lysosomal processing and to determine whether these changes can be prevented by aminoguanidine or ramipril treatment. The percentage desulphation of intravenously injected tritium labelled dextran sulphate ([3H]DSO4) in the urine, as determined by ion-exchange chromatography, was used as a marker of lysosomal sulphatase activity. Sulphatase activity was determined 1, 2, 3 and 4 weeks after the onset of diabetes in rats as well as in rats treated with either aminoguanidine or ramipril for twelve weeks. The amount of totally desulphated [3H]DSO4 in urine collected from control rats was 65.6 +/- 0.8%. This was significantly reduced in diabetic rats two (57.4 +/- 1.4% desulphated), three (56.8 +/- 1.3 % desulphated) and four (52.9 +/- 2.2% desulphated) weeks after the onset of diabetes. The significant decrease in the amount of totally desulphated [3H]DSO4 in the urine also found at 12 weeks after the onset of diabetes was not affected by drug treatment. There was no significant difference in the amount of partially desulphated [3H]DSO4 in the urine between all the study groups. However, the increase in totally sulphated [3H]DSO4 in the urine collected from diabetic rats (8.7 +/- 1.7 % sulphated) compared with that of control rats (2.2 +/- 0.5% sulphated) was normalised by treatment with both aminoguanidine (4.8 +/- 1.6% sulphated) or ramipril (4.5 +/- 0.8% sulphated). These results raise the possibility that the diabetes-induced changes in renal lysosomal processing may be one of the initial events in the development of diabetic nephropathy. Aminoguanidine and ramipril, known for their different mechanism of action, seem to prevent diabetes-induced changes in lysosomal processing either through their effects on enzyme activity within the lysosome or through their effects on the trafficking of molecules to and from the lysosome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.