Abstract
This article presents a microstructural study on the role of incipient residual stress relaxation in TiC-particulate/SiC-matrix ceramic composite toughened by thermal expansion mismatch and phase transformation toughening. Exhaustive microstructural studies was undertaken using scanning electron microscopy and transmission electron microscopy following a wear test. It was found that the superposition of hydrostatic tensile stress induced at the surface following the sliding contact on the inherent residual stresses locked in the composite led to a relaxation and/or reduction in the residual stresses. Stress relaxation presented a wider implication for the tribological properties of this ceramic matrix composite (CMC) in the form of a grain-scale rippling microstructural phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.