Abstract

The ramification of a polyhedral space is defined as the metric completion of the universal cover of its regular locus. We consider mainly polyhedral spaces of two origins: quotients of Euclidean space by a discrete group of isometries and polyhedral metrics on $\mathbb{C}\text{P}^{2}$ with singularities at a collection of complex lines. In the former case we conjecture that quotient spaces always have a $\text{CAT}[0]$ ramification and prove this in several cases. In the latter case we prove that the ramification is $\text{CAT}[0]$ if the metric on $\mathbb{C}\text{P}^{2}$ is non-negatively curved. We deduce that complex line arrangements in $\mathbb{C}\text{P}^{2}$ studied by Hirzebruch have aspherical complement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call