Abstract

AbstractIn this note, we revisit Ramanujan-type series for $\frac {1}{\pi }$ and show how they arise from genus zero subgroups of $\mathrm {SL}_{2}(\mathbb {R})$ that are commensurable with $\mathrm {SL}_{2}(\mathbb {Z})$ . As illustrations, we reproduce a striking formula of Ramanujan for $\frac {1}{\pi }$ and a recent result of Cooper et al., as well as derive a new rational Ramanujan-type series for $\frac {1}{\pi }$ . As a byproduct, we obtain a Clausen-type formula in some general sense and reproduce a Clausen-type quadratic transformation formula closely related to the aforementioned formula of Ramanujan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.