Abstract
In this paper we study the security of a proposal for Post-Quantum Cryptography from both a number theoretic and cryptographic perspective. Charles–Goren–Lauter in 2006 proposed two hash functions based on the hardness of finding paths in Ramanujan graphs. One is based on Lubotzky–Phillips–Sarnak (LPS) graphs and the other one is based on Supersingular Isogeny Graphs. A 2008 paper by Petit–Lauter–Quisquater breaks the hash function based on LPS graphs. On the Supersingular Isogeny Graphs proposal, recent work has continued to build cryptographic applications on the hardness of finding isogenies between supersingular elliptic curves. A 2011 paper by De Feo–Jao–Plut proposed a cryptographic system based on Supersingular Isogeny Diffie–Hellman as well as a set of five hard problems. In this paper we show that the security of the SIDH proposal relies on the hardness of the SSIG path-finding problem introduced in Charles et al. (2009). In addition, similarities between the number theoretic ingredients in the LPS and Pizer constructions suggest that the hardness of the path-finding problem in the two graphs may be linked. By viewing both graphs from a number theoretic perspective, we identify the similarities and differences between the Pizer and LPS graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.