Abstract

Raman spectroscopy is a widely applied analytical technique with numerous applications that is based on inelastic scattering of monochromatic light, which is typically provided by a laser. Irradiation of a sample by a laser beam is always accompanied by an increase in the sample temperature, which may be unwanted or may be beneficial for studying temperature-related effects and determining thermal parameters. This work reports analyses of the temperature field induced by a Gaussian laser to calculate the Raman scattered intensity related to each temperature value of the nonuniform field present on the sample. The effective temperature of the probed field, calculated as an average weighted by the laser intensity, is demonstrated to be about 70% of the maximum temperature irrespective of the absorption coefficient or the laser focus. Finally, using crystalline silicon as a model material, it is shown that this effective value closely approximates the temperature value identified from the thermally related peak shift.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.