Abstract

Graphene oxide (GO) is an organic material with interesting properties for nanotechnology. Therefore, it is important to understand the processes that lead to its mass production for deposition onto large-size wafers and with high quality; as well as the control of the number of monolayers and the degree of oxidation. In this work, we propose an alternative method for measuring the oxidation degree of GO. We use simulated Raman spectra from different molecular models that, under computational calculations based on density functional theory (DFT), allow us to explain the measured Raman spectra and the approximate molecular structure of the material. In addition, we report on a methodology based on a process of remotely catalyzed chemical vapor deposition (CVD) to synthesize GO in millimeter areas directly onto three different substrates: SiO2/Si, Si, and GaAs. The results can be used to optimize the synthesis processes of GO and improving the performance of this organic material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call