Abstract

AbstractCrystallization of amorphous Sil−x.Bx alloy films by annealing is studied. Amorphous Sil−xBx. alloy films with composition of boron x ranging from 0.01 to 0.5 are deposited on Si substrates at a temperature of 480° in a low pressure chemical vapor deposition (LPCVD) system. Three films with the boron contents, 1%, 7% and 45%, are used in this study. The films are annealed in a nitrogen ambient for 30 minutes at temperatures between 600°C and 900°C. Raman spectra of the silicon vibrational mode serve as a indicator for the microstructure of the Sil−xBx, alloy films. Quantitative estimates of the volume fraction of the crystalline silicon component in respect to the amorphous silicon component in the films are calculated based on the silicon TO mode. The results show that while for the film with the boron content of 1% crystallization occurs at the annealing temperature of 500°C, the annealing temperature of 7000C is required to observe crystallization in the films with the boron contents of 7% and 45%. As the annealing temperature increases, the volume fraction of the crystalline component increases. For a given annealing temperature, the rate of crystallization depends inversely on the boron content in the films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.