Abstract

l-glutamine crystal was obtained by the slow evaporation method and its crystallographic structure was verified by X-ray diffraction experiments and the Rietveld method. The vibrational modes of l-glutamine were investigated through Raman spectroscopy and the normal modes were obtained using the Density Functional Theory with the B3LYP functional and set of bases 6-31G++(d, p). With such approach, it was possible to make a theoretical-experimental comparison of the results obtained and to furnish a more precise assignment of the normal modes. The crystal was submitted to high pressure conditions and the Raman spectra between 3055 and 40 cm−1 were recorded for pressures up to 6.1 GPa in a diamond anvil cell. This study allowed us to understand that the crystal undergoes a reversible structural phase transition around 4.0 GPa, characterized mainly by spectral changes in the region of the external modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.