Abstract

Two-dimensional ferroic materials exhibit a variety of functional properties that can be tuned by temperature and pressure. CuInP2S6 is a layered material that is ferrielectric at room temperature and whose properties are a result of the unique structural arrangement of ordered Cu+ and In3+ cations within a (P2S6)4− anion backbone. Here, we investigate the effect of hydrostatic pressure on the structure of CuInP2S6 single crystals through a detailed Raman spectroscopy study. Analysis of the peak frequencies, intensities, and widths reveals four high pressure regimes. At 5 GPa, the material undergoes a monoclinic-trigonal phase transition. At higher pressures (5–12 GPa), we see Raman peak sharpening, indicative of a change in the electronic structure, followed by an incommensurate phase between 12 and 17 GPa. Above 17 GPa, we see evidence for bandgap reduction in material. The original state of the material is fully recovered upon decompression, showing that hydrostatic pressure could be used to tune the electronic and ferrielectric properties of CuInP2S6.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call