Abstract

High-modulus carbon fibres from different precursors were submitted to an oxygen plasma-treatment under similar conditions. Single-fibre epoxy composites were prepared from them, and fragmentation tests were performed in order to characterise fibre–matrix interfacial adhesion. Raman spectroscopy has been used in the present work to map the strain along the fibre during tensile loading of the matrix. The strain distributions obtained agreed well with the prediction of analytical models used conventionally to describe load transfer at interfaces. Interfacial shear stress distributions were then obtained from these distributions according to the conventional force–balance concept. The interfacial shear strength (IFSS) and frictional shear stress ( τ f) values were calculated to quantify the degree of fibre–matrix adhesion. It was found that both parameters increased dramatically after the surface treatment, confirming the ability of cold plasma oxidation to improve the adhesion of carbon fibre to epoxy matrices. A dependence of the IFSS on the degree of surface order, as given by the structural order parameter I D/( I D+ I G), calculated from the relative intensities of the D and G bands of Raman spectra, was found. This supports the role played by the graphitic structure in fibre–matrix adhesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.