Abstract

Permeabilization of the outer mitochondrial membrane is an integral step in apoptosis. The resulting release of pro-apoptotic signaling proteins leads to cell destruction through activation of the cysteine-aspartic protease (caspase) cascade. However, the mechanism of outer mitochondrial membrane (OMM) permeabilization remains unclear. It was recently shown that cytochrome c can induce pore formation in cardiolipin-containing phospholipid membranes, leading to large dextran and protein permeability. In this work, the interaction of cytochrome c with cardiolipin-containing phospholipid vesicles, serving as models of the OMM, is investigated to probe cytochrome c-induced permeability. Lipid vesicles having either a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or mixed-DPPC/cardiolipin membrane and containing a membrane-impermeable Raman tracer 3-nitrobenzenesulfonate (3-NBS) were optically trapped, translated into a solution containing cytochrome c, and monitored for 3-NBS leakage. Cytochrome-correlated leakage was observed only in cardiolipin-containing vesicles. Structural changes observed in the Raman spectra during permeabilization indicated acyl chain disordering along with decreased intensity of the cardiolipin cis-double-bond stretching modes. When the vesicle-associated cytochrome c Raman spectrum is compared with a spectrum in buffer, heme-resonance bands are absent, indicating loss of Met-80 coordination. To verify selective interactions of cytochrome c with cardiolipin, these experiments were repeated where the DPPC acyl chains were deuterated (D62-DPPC), allowing spectral resolution of the DPPC acyl chain response from that of cardiolipin. Interestingly, D62-DPPC acyl chains were unaffected by cytochrome c accumulation, while cardiolipin showed major changes in acyl chain structure. These results suggest that cytochrome-induced permeabilization proceeds through selective interaction of cytochrome c with cardiolipin, resulting in protein unfolding, where the unfolded form interacts with cardiolipin acyl chains within the bilayer to induce permeability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call