Abstract

ABSTRACTIn this paper, we discuss the low-frequency range of the Raman spectrum of individual suspended index-identified single-walled (SWCNTs) and double-walled carbon nanotubes (DWCNTs). In SWCNTs, the role of environment on the radial breathing mode (RBM) frequency is discussed. We show that the interaction between the surrounding air and the nanotube does not induce a RBM upshift. In several DWCNTs, we evidence that the low-frequency modes cannot be connected to the RBM of each related layer. We discuss this result in terms of mechanical coupling between the layers which results in collective radial breathing-like modes. The mechanical coupling qualitatively explains the observation of Raman lines of radial breathing-like modes, whenever only one of the layers is in resonance with the incident laser energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call