Abstract

Polarization dependent Raman scattering experiments realized on single GaAs nanowires with different percentages of zinc-blende and wurtzite structure are presented. The selection rules for the special case of nanowires are found and discussed. In the case of zinc-blende, the transversal optical mode E1(TO) at 267 cm-1 exhibits the highest intensity when the incident and analyzed polarization are parallel to the nanowire axis. This is a consequence of the nanowire geometry and dielectric mismatch with the environment, and in quite good agreement with the Raman selection rules. We also find a consistent splitting of 1 cm-1 of the E1(TO). The transversal optical mode related to the wurtzite structure, E2H, is measured between 254 and 256 cm-1, depending on the wurtzite content. The azymutal dependence of E2H indicates that the mode is excited with the highest efficiency when the incident and analyzed polarization are perpendicular to the nanowire axis, in agreement with the selection rules. The presence of strain between wurtzite and zinc-blende is analyzed by the relative shift of the E1(TO) and E2H modes. Finally, the influence of the surface roughness in the intensity of the longitudinal optical mode on {110} facets is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.