Abstract

Methods to control polymorphic modifications of phthalocyanines using optical (laser) radiation and possible photoinduced transformations of polymorphs are of practical interest in problems of identification and attribution of paintings, laser (micro)sampling, and the development of phthalocyanine structures for technical applications in optics, optoelectronics, and medicine. In this work, we compare the thermal and laser-induced changes of a gouache paint layer based on copper phthalocyanine (CuPc) PB15. The thermally induced color changes of the paint layer are quantified using the CIE Lab D65/10 color space. (Nano)rods formed in the paint layer when the sample is heated to 450°C at normal pressure without humidity control are studied using absorption spectroscopy, Raman microspectroscopy, and scanning electron microscopy. It is shown that the formation of (nano)rods is related to the α→β polymorph transition of CuPc. Low-frequency markers of the CuPc β-polymorph are revealed in the Raman spectra. For the sample containing (nano)rods, the a* color coordinate substantially increases (by about 30 units), whereas the L* and b* coordinates remain almost unchanged. Irradiation with a single nanosecond laser pulse at a wavelength of 532 nm leads to the laser ablation of the paint layer at fluences exceeding a threshold level of about 3 J/cm2. Irradiation at fluences of greater than 0.5 J/cm2, but lower than the ablation threshold leads to color change of the paint layer due to the α→ε transition of CuPc. Similar transformations are observed at the periphery of and inside ablation crater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call