Abstract

The effect of solvent on the conformation of alkyl chains of two octadecysilane-based stationary phases is probed using Raman spectroscopy. Spectral data indicate that the alkyl chains of commercially available polymeric and monomeric solid-phase extraction stationary phases are disordered to a varying extent by solvents of different polarity. For the polymeric octadecylsilane stationary phase, the polar solvents water, acetonitrile, methanol, acetone and isopropanol have little impact on the conformational order of the octadecylsilane bonded phase relative to air. However, the alkyl portion of this stationary phase is substantially disordered in the low-polarity solvents tetrahydrofuran, chloroform, benzene, toluene and hexane. The monomeric octadecylsilane stationary phase is less susceptible to disordering by solvents, although more disorder in the less polar solvents is also observed for this system. These results are interpreted in terms of the local surface bonding density and interchain spacing of these two stationary phases, and the ability of the solvent to penetrate the chains as a function of polarity. The results clearly demonstrate the ability of Raman spectroscopy to precisely indicate subtle changes in conformational order of alkylsilane stationary phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call