Abstract
AbstractRaman scattering studies were carried out on epi Si/Si1-xGex (x = 0.1 to 0.3) heterostructures consisting of a thin Si cap layer (100 - 400 A˚), a grade-down Si1-xGex layer, a constant Si1-xGex, buffer layer and a grade-up graded Si1-xGex layer on (100) oriented Si substrates. Different Ge composition, Si1-xGex layer thicknesses and thermal treatment were used to achieve different relaxation in the Si1-xGex layers. It has been revealed that, to a very good approximation, the absolute strains in the cap Si and constant Si1-xGex layers follow a simple sum-rule that is imposed by the lattice mismatch between unstrained Si and completely relaxed Si1-x Gex. This sum rule can be used to determine the Ge composition and stresses in both cap Si and constant Si1-xGex layers. Excellent agreement was found between the theoretical curve obtained with LO phonon strain coefficient b=−930cm−1 and the experimental total strain for all samples, regardless of the degree of the relaxation of the grade-up Si1-xGex layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.