Abstract

Three-dimensional models of amorphized zones beneath quasistatic and dynamic Vickers indentations on boron carbide were constructed using micro-Raman spectroscopy. The square of amorphized zone depth varied linearly with load and the maximum amorphized area occurred beneath the indentation imprint in accord with the maximum shear stress under Hertzian contact. Reduced measurements of amorphization intensity at loads above 10N may be due to a loss of subsurface amorphized material through lateral cracks. Utilizing an expanding cavity model with power-law (n=0.79–0.80) and linear (Ep=0.39–0.45) strain hardening responses, finite element simulations were conducted to determine the critical values of stress and strain required to cause amorphization. These simulations suggest that amorphization may initiate at von Mises stresses and equivalent plastic strains above 6.6GPa and 0.026, respectively. These results may be useful for validating computational models of boron carbide under complex loading scenarios (e.g., ballistic impact).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.