Abstract
Twelve samples of waste cooking oil (WCO) were prepared by four different deep-frying procedures. The edible and the waste oil samples were characterised by Raman spectroscopy, revealing few and almost negligible differences between them. Therefore, the possibility of classifying the different groups of samples by extracting valuable data from the Raman spectra through statistical multivariate analysis was explored. Even if the number of samples was not enough to draw definitive conclusions, unsupervised principal component analysis (PCA) and supervised partial least square discriminant analysis (PLS-DA) conducted on the raw Raman signals, allowed to distinguish within edible and waste vegetable oil, and to select the most relevant combination of variables associated with each family. Using sparse partial least square discriminant analysis (S-PLS-DA), we determined a chemical fingerprint characteristic of each sample by creating a Variable In Projection (VIP) plot. The methodology herein presented could find relevant application in the detection of waste adulteration in vegetable oils sold for industrial purposes other than food.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.