Abstract
Raman spectroscopy and pattern recognition techniques are used to develop a potential method to characterize wood by type. The test data consists of 98 Raman spectra of temperate softwoods and hardwoods, and Brazilian and Honduran tropical woods. A genetic algorithm (GA) is used to extract features (i.e., line intensities at specific wavelengths) characteristic of the Raman profile of each wood-type. The spectral features identified by the pattern recognition GA allow the wood samples to cluster by type in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by these spectral features is about differences between wood types. The predictive ability of the descriptors identified by the pattern recognition GA and the principal component map associated with them is validated using an external prediction set consisting of tropical woods and temperate hard and softwoods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.