Abstract

The thermal gradients along indium arsenide nanowires were engineered by a combination of fabricated micro-trenches in the supporting substrate and focused laser irradiation. This allowed local spatial control of thermally activated oxidation reactions of the nanowire on the scale of the diffraction limit. The locality of the oxidation was detected by micro-Raman mapping, and the results were found to be consistent with numerical simulations of the temperature profile. Applying the technique to nanowires in electrical devices the locally oxidized nanowires remained conducting with a lower conductance as expected for an effectively thinner conducting core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.