Abstract

Raman spectroscopy could offer non-invasive, rapid and an objective nature to cancer diagnostics. However, much work in this field has focused on resolving differences between cancerous and non-cancerous tissues, and lacks the reproducibility and interpretation to be put into clinical practice. Much work is needed on basic cellular differences between malignancy and normal. This would allow the establishment of a clinically relevant cellular based model to translate to tissue classification. Raman spectroscopy provides a very detailed biochemical analysis of the target material and to 'unlock' this potential requires sophisticated mathematical modelling such as neural networks as an adjunct to data interpretation. Commercially obtained cancerous and non-cancerous cells, cultured in the laboratory were used in Raman spectral measurements. Data trends were visualised through PCA and then subjected to neural network analysis based on self-organising maps; consisting of m maps, where m is the number of classes to be recognised. Each map approximates the statistical distribution of a given class. The neural network analysis provided a 95% accuracy for identification of the cancerous cell line and 92% accuracy for normal cell line. In this preliminay study we have demonstrated th ability to distinguish between "normal" and cancerous commercial cell lines. This encourages future work to establish the reasons underpinning these spectral differences and to move forward to more complex systems involving tissues. We have also shown that the use of sophisticated mathematical modelling allows a high degree of discrimination of 'raw' spectral data.

Highlights

  • A range of optical methodologies including fluorescence, Fourier transform infrared and Raman spectroscopies have attracted much interest in biomedicine because of their potential advantages in offering non-invasive, rapid and objective diagnostics

  • In order to translate this technique effectively to clinical practice much work is needed on basic cellular differences between cancerous and normal cells

  • These cells were grown in Minimum Essential Medium Eagle (EMEM) with Hank's Salts (HBSS) (Sigma, USA), with 5% L-glutamine (Sigma, USA), 1% non - essential amino acids (Sigma, USA), and 10% Foetal Calf serum (FCS)

Read more

Summary

Introduction

A range of optical methodologies including fluorescence, Fourier transform infrared and Raman spectroscopies have attracted much interest in biomedicine because of their potential advantages in offering non-invasive, rapid and objective diagnostics. Head & Neck Oncology 2009, 1:38 http://www.headandneckoncology.org/content/1/1/38 the potential to discriminate and resolve differences between cancer and normal tissues [11,12,13]. Much of this work lacks the reproducibility and interpretation that would enable spectroscopy diagnostics to translate, 'from the bench to the bedside'. In order to translate this technique effectively to clinical practice much work is needed on basic cellular differences between cancerous and normal cells. Once these are appreciated, translating the work through to tissue would have a higher impact

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call