Abstract

We investigated the solvation of several room temperature ionic liquids by Raman spectroscopy using diphenylcyclopropenone (DPCP) and phenol blue (PB) as probe molecules. We estimated acceptor numbers (AN) of room temperature ionic liquids by an empirical equation associated with the Raman band of DPCP assigned as a C=C stretching mode involving a significant C=O stretching character. According to the dependence of AN on cation and anion species, the Lewis acidity of ionic liquids is considered to come mainly from the cation charge. The frequencies and bandwidths of the C=O and C=N stretching modes of phenol blue are found to be close to those in conventional polar solvents such as methanol and dimethyl sulfoxide. The frequencies of these vibrational modes show similar dependence upon the electronic absorption band center as is observed in conventional liquid solvents. However, peculiar behavior was found in the Raman bandwidths and the excitation wavelength dependence of the C=N stretching mode in room temperature ionic liquids. Both the bandwidth of the C=N stretching mode and the extent of the excitation wavelength dependence of the Raman shift of the C=N stretching mode tend to decrease as the absorption band center decreases, in contrast to the case of conventional solvents. This anomaly is discussed in terms of the properties of room temperature ionic liquids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call