Abstract

In this paper, polarized Raman spectroscopy is applied to quantitatively assess crystallographic alteration and interfacial residual stress with a micron-scale resolution in highly 〈0001〉 oriented (textured) polycrystalline wurtzitic AlN films grown on (001)-oriented Si substrates. Raman selection rules for the wurtzite structure of AlN were explicitly put forward and a set of Raman tensor elements determined from experimentally retrieved angular dependences of Raman band intensities upon in-plane rotation measurements. An appreciably high degree of homogeneity in the AlN film (i.e., with respect to both in-plane and out-of-plane Euler angles, retrieved according to the proposed spectroscopic algorithm) could be observed in spectral line scans randomly selected on the cross-section of the film/substrate system. These characterizations indicated negligible structural alterations, such as grain tilting and twisting during film growth. However, a non-uniform stress distribution in the AlN film along the film thickness direction was found, which remained stored during manufacturing of the AlN film. A quite remarkable magnitude of compressive residual stress (∼−1.5GPa) could be measured at the film/substrate interface. Finally, a Raman (non-destructive) statistical characterization of the film system in terms of micromechanical homogeneity by spectral surface mapping is presented, which provides a prompt overall view of the film quality. The proposed procedure should generally be applicable in crystallographic and micromechanical quality control of electronic film devices exhibiting a Raman spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call