Abstract
Raman spectra of monoclinic hafnium oxide $({\text{HfO}}_{2})$ were measured at temperatures up to 1100 K. Raman peak shifts and broadenings are reported. Phonon dynamics calculations were performed with the shell model to obtain the total and partial phonon density of states, and to identify the individual motions of Hf and O atoms in the Raman modes. Correlating these motions to the thermal peak shifts and broadenings, it was found that modes involving changes in oxygen-oxygen bond length were the most anharmonic. The hafnium-dominated modes were more quasiharmonic and showed less broadening with temperature. Comparatively, the oxygen-dominated modes were more influenced by the cubic term in the interatomic potential than the hafnium-dominated modes. An approximately quadratic correlation was found between phonon-line broadening and softening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.