Abstract
AbstractRaman spectra have been measured for pellets of five samples of high‐density polyethylene (HDPE), seven samples of low‐density polyethylene (LDPE), and six samples of linear low‐density polyethylene (LLDPE). The obtained Raman spectra have been compared to find out characteristic Raman bands of HDPE, LDPE, and LLDPE. Principal component analysis (PCA) was applied to the Raman spectra in the 1600–650 cm−1 region after multiplicative scatter correction (MSC) to discriminate the Raman spectra of the three different PE species. They are classified into three groups by a score plot of PCA factor 1 vs. 2. HDPE with high density and high crystallinity gives high scores on the factor 1 axis, while LDPE with low density and low crystallinity yields negative scores on the same axis. It seems that factor 1 reflects the density or crystallinity. A PC weight loadings plot for factor 1 shows six upward peaks corresponding to the bands arising from the crystalline parts or all‐trans (CH2)n groups and seven downward peaks ascribed to the bands of the amorphous or anisotropic regions and those arising from the short branches. Partial least‐squares (PLS‐1) regression was applied to the Raman spectra after MSC to propose calibration models that predict the density, crystallinity, and melting points of the polyethylenes. The correlation coefficient was calculated to be 0.9941, 0.9800, and 0.9709 for the density, crystallinity, and melting point, respectively, and their root‐mean‐square error of cross validation (RMSECV) was found to be 0.0015, 3.3707, and 2.3745, respectively. The loadings plot of factor 2 for the prediction of melting point is largely different from those for the prediction of density and crystallinity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 443–448, 2002
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.