Abstract

The Raman spectra of bixbyite, Mn2O3, were measured up to 40 GPa at room temperature. Mn2O3 undergoes a phase transition from the C-type rare earth structure to the CaIrO3-type (post-perovskite) structure at 16–25 GPa. The transition pressure measured in Raman spectroscopy is significantly lower than the pressure reported previously by an X-ray diffraction study. This could be due to the greater polarizability in the CaIrO3-type structure, consistent with high-pressure observation on the CaIrO3 type in MgGeO3, although it is still possible that experimental differences may cause the discrepancy. Unlike the change at the perovskite to CaIrO3-type transition, the spectroscopic Gruneisen parameter does not decrease at the C-type to CaIrO3-type transition. The spectroscopic Gruneisen parameter of the low-pressure phase (C type) is significantly lower than thermodynamic Gruneisen parameter, suggesting significant magnetic contributions to the thermodynamic property of this material. Our Raman measurements on CaIrO3-type Mn2O3 contribute to building systematic knowledge about this structure, which has emerged as one of the common structures found in geophysically important materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.