Abstract
Raman studies of a high-pressure structure of hydrogen hydrate, a filled ice Ic structure, were performed using a diamond anvil cell in the pressure range 3.2–44.1 GPa. The Raman spectra of a vibron revealed that extraction of hydrogen molecules from the filled ice Ic structure occurred above 20 GPa. In addition, the Raman spectra of a roton revealed that a rotation of hydrogen molecules in the filled ice Ic structure was suppressed at around 20 GPa and then the rotation recovered, and the rotation of hydrogen molecules was suppressed again above 35.5 GPa. These results indicate that intermolecular interactions increased between guest hydrogen molecules and host water molecules at around 20 and 35.5 GPa. These intermolecular interactions were considered to be induced to stabilize the filled ice Ic structure. Above 40 GPa, symmetrization of hydrogen bond was considered to contribute to the stability of hydrogen hydrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.