Abstract

Fourier transform (FT) and resonance Raman spectra of 1-methyl-4-(4-diethylaminophenylazo)-pyridinium iodide (MDP) and its four deuterated and three 15N stable isotopic compounds have been measured in neutral and acidic aqueous solutions, and the molecular structures have been discussed on the basis of detailed vibrational assignments using the isotope shifts. No Raman band due to the azo NN group is observed in a neutral aqueous solution and also in the solid state of MDP; therefore, this finding suggests that double bond character of the azo group becomes weak and, consequently, the structures of both benzene and pyridinium rings are close to that of a quinoid. The Raman and the 15N NMR spectra indicate that the Nβ of the azo group is protonated in an acidic solution of MDP. Comparison of the spectra of the two solutions suggests that the benzene ring has more quinoid character in the acidic than in the neutral solution. The chromophore structures have been revealed in each of the neutral (purple) and the acidic (yellow) solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.