Abstract

Distributed Raman sensor offers a number of advantages to the implementation of smart grid, which is aimed to improve reliability and energy efficiency as compared with traditional power grid. However, the fantastic properities of slow light are rarely considered in the former studies on the Raman sensor systems. In this paper, the effects of Raman slow-light on room-temperature single-mode optical fiber sensors are examined by extracting the Raman pulse-delay terms from extended nonlinear Schrodinger equation (NLSE). Numerical study shows that pulse parameters such as pulse position, frequency chirp, and envelope distortion may be greatly affected by slow light. Two important points of pump power are show clearly keeping the Raman pulse zero walk-off or chirp free, respectively. We demonstrate a method based on pump power adjustment for compensating the slow light induced impairment. DOI: http://dx.doi.org/10.11591/telkomnika.v11i5.2472

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.