Abstract

We explain the origin of the high-energy mode in the first-order Raman spectra of single-walled carbon nanotubes by double-resonant scattering. Following this interpretation, we calculate the multiple-peak structure as found in Raman experiments. The highest peak is above the graphite $\ensuremath{\Gamma}$-point frequency; its amplitude is larger than that of the second peak. We derive positive and negative frequency shifts as a function of excitation energy, which we observe experimentally as well. We predict a difference in frequency and shape of the high-energy mode in Stokes and anti-Stokes scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.