Abstract

Circulating light in the total internal reflection within dielectric spheres or disks is called the whispering gallery mode (WGM), which by itself is highly sensitive to its surface and capable of detecting viruses and single atomic ions. The detection site of the sensors using WGM is created by the evanescent light from the circulating light inside spheres. Here we report anomalous Raman scattering enhancement in dielectric microspheres on a silicon nitride (SiN) film. This Raman enhancement occurs at the periphery of the spheres, and a similar ring of light was also observed under a fluorescence microscope. This is caused by the light circulating around the dielectric spheres as in the WGM. We observed anomalously enhanced Raman spectrum at the periphery of 3 μm diameter polystyrene (PS) microspheres on a SiN film using confocal laser Raman microscopy. The wavelength intensity of this enhanced Raman spectrum was accompanied by periodic changes due to interference. These features may lead to the development of high-sensitive sensors and optical devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.