Abstract

In this paper, we use Maxwell equations and the first order perturbation theory to obtain pulse propagation equation in a plasmonic waveguide made of nonlinear dielectric material. In this study, the effects of nonlinear self-steepening and Raman scattering are considered. Nonlinear coefficients of phase modulation, Raman and self-steepening are calculated numerically in terms of frequency and compared with a standard silica fiber. Obtained values of the nonlinear coefficients are about up to 300 times larger than that of standard silica optical fibers. So they can be used as part of all optical integrated circuit such as continuum generation, optical switching and frequency conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call