Abstract

By using in situ temperature-dependent Raman spectroscopy, we systematically study the annealing properties of photosensitive single-mode fibers and report on microstructural changes in Ge:SiO2 fiber glass as a function of time for thermal cycle between ambient temperature and 1000°C. We clearly observe the fiber core-structural relaxation during annealing as well as the temperature dependence of the vibrational band obtained with peak deconvolution, and it thereby enables one to explain thermal expansion effect independently, with the remaining possible challenge to extract the thermo-optic coefficient. This is particularly interesting for a detailed, microscopic understanding and improving optical properties of glass fibers at an elevated temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.