Abstract

In this paper, we demonstrate that combined application of X-ray diffraction (XRD), electron microscope/microprobe analysis (EMPA), and Raman microspectroscopy is an available and powerful approach for identification and characterization of iron arsenate minerals in complex environmental samples. Arsenic-rich material from the medieval mining dump close to the Giftkies mine in the Jáchymov ore district (Czech Republic) has been studied. Scorodite, kankite, amorphous iron arsenate (pitticite), and, to a lesser extent, native sulfur were determined in the studied samples as products of low-temperature arsenopyrite weathering. Scorodite and kankite form mixed nodules and crusts, which are locally coated by hardened gel-like amorphous pitticite. Pitticite also borders fractures in the mineralized rock fragments in the dump. Native sulfur, in microscopic crystals and grainy aggregates, originates directly in places with dissolved arsenopyrite and forms pseudomorphs. The Raman spectra presented in the paper can serve as comparative data for phase identification in other contaminated areas. New Raman data for the hydroxyl stretching region of scorodite (important bands: 3514, 3427, and 3600 cm(-1)) and the whole Raman spectrum for pitticite (important bands: 472, 831, 884, 2935, 3091, 3213, 3400, and 3533 cm(-1)) are a valuable output of this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call