Abstract

The study of filamentous virus structure by Raman spectroscopy requires accurate band assignments. In previous work, site- and residue-specific isotope substitutions were implemented to elucidate definitive assignments for Raman bands arising from vibrational modes of the alpha-helical coat protein main chain and aromatic side chains in the class I filamentous phage, fd [Overman, S. A., and Thomas, G. J., Jr. (1995) Biochemistry 34, 5440-5451; Overman, S. A., and Thomas, G. J., Jr. (1998) Biochemistry 37, 5654-5665]. Here, we extend the previous methods and expand the assignment scheme to identify Raman markers of nonaromatic side chains of the coat protein in the native fd assembly. This has been accomplished by Raman analysis of 11 different fd isotopomers selectively incorporating deuterium at specific sites in either alanine, aspartic acid, glutamic acid, glycine, isoleucine, leucine, lysine, serine, or valine residues of the coat protein. Raman markers are also identified for the corresponding deuterated side chains. In combination with previous assignments, the results provide a comprehensive understanding of coat protein contributions to the Raman signature of the fd virion and validate Raman markers assigned to the packaged single-stranded DNA genome. The findings described here show that nonaromatic side chains contribute prolifically to the fd Raman signature, that marker bands for specific nonaromatics differ in general from those observed in corresponding polypeptides and amino acids, and that the frequencies and intensities of many nonaromatic markers are sensitive to secondary and higher-order structures. Nonaromatic markers within the 1200-1400 cm-1 interval also interfere seriously with the diagnostic Raman amide III band that is normally exploited in secondary structure analysis. Implications of these findings for the assessment of protein conformation by Raman spectroscopy are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.